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Abstract

This review is a contribution to a book dedicated to the memory of Michael E. Fisher. The first

example of a quantum many body system not expected to have any quasiparticle excitations was

the Wilson-Fisher conformal field theory. The absence of quasiparticles can be established in the

compressible, metallic state of the Sachdev-Ye-Kitaev model of fermions with random interactions. The

solvability of the latter model has enabled numerous computations of the non-quasiparticle dynamics

of chaotic many-body states, such as those expected to describe quantum black holes. We review

thermodynamic properties of the SYK model, and describe how they have led to an understanding of

the universal structure of the low energy density of states of charged black holes without low energy

supersymmetry.
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I. INTRODUCTION

The early work of Michael Fisher on critical points in fluid and magnetic systems [1] pioneered

a line of thought which ultimately transformed the fields of condensed matter physics and high

energy particle physics. I recall the strong impression his articles made on me as a young student

in the early 80’s. The idea of ‘universality’ seemed almost magical: why should an Ising model of

magnetic spins on a lattice have the same critical exponents as the liquid-gas critical point of carbon

dioxide? The combination of mathematical elegance and experimental relevance was unbeatable,

and convinced me to become a condensed matter theorist. I was fortunate to learn more about

these topics from my Ph.D. advisor David Nelson, one of Michael Fisher’s Ph.D. advisees, and so

become part of Michael Fisher’s remarkable academic tree (see Fig. 1).

The ideas of universality and universal scaling functions led to the development of the renormal-

ization group, and of renormalization group fixed points, by Fisher, Kadanoff, Wilson, and others.

These developments greatly broadened the impact of Michael Fisher’s ideas. The Wilson-Fisher

fixed point [2] provided the first example of a conformal field theory which was strongly interact-

ing. Earlier examples, such as the Bethe ansatz for the antiferromagnetic Heisenberg spin chain

[3] and Onsager’s solution of the two-dimensional Ising model on the square lattice [4], provided

fixed points which ultimately permitted a free field description, although the relationship between

the free fields and the microscopic degrees of freedom was quite non-trivial.

In a more recent language, the Wilson-Fisher fixed point provides the first example of a many-

body quantum system which is not expected to have any quasiparticle excitations i.e. the two-

spatial-dimensional Ising model in a critical transverse field is a quantum system which has no

particle-like description of its excitations, even asymptotically. One indication of the absence of

quasiparticles is that the retarded dynamic susceptibility of the critical Ising model at momentum

k and frequency ω obeys [5]

χ(k, ω) ∼ 1

[c2k2 − (ω + i0+)2]1−η/2
, (1)

with η the anomalous dimension exponent introduced by Fisher and Burford [6]. A non-zero η

implies that the spectral density of excitations has a branch cut for |ω| > ck, and there is no pole

associated with a quasiparticle. This point of view is developed in my first book [7], and should be

contrasted from that invariably taken in quantum field theory monographs, where the asymptotic

scattering states are reduced to free particles via a LSZ reduction. I should note that the non-

quasiparticle property of the Wilson-Fisher fixed point has not been proven, although it is highly

likely: it is not ruled out that some exotic and non-local quasiparticle basis may be discovered in

the future, leading to poles in the associated non-local operator.

Michael Fisher expressed the strongly interacting property by the concept of ‘hyperscaling’ [8]:
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FIG. 1: Michael Fisher on the occasion of the Lee Historical Lecture at Harvard in 2017. Shown

here with 5 generations in the Fisher academic tree: Michael Fisher, David R. Nelson, the

author, T. Senthil, and Chong Wang.

for a quantum critical system in d spatial dimensions with dynamic critical exponent z hyperscaling

implies that the entropy density S has the following dependence on temperature

S(T → 0) = a1T
d/z (2)

for some constant a1. For a system with relativistic invariance with a velocity c at low energies,

we have z = 1, and we obtain a length scale ℏc/(kBT ), and then the dimensional constant a2 in

S(T → 0) = a2kB(kBT/(ℏc))d (3)

becomes a universal number [8], dependent only upon the universality class of the critical theory.

The number a2 is closely connected to the ‘central charge’ of conformal field theories.

Another consequence of hyperscaling, and the associated absence of quasiparticles, is that the

dynamics of such systems is ‘Planckian’, an idea finding much resonance in studies of strongly

correlated electrons [9]. The relaxational and dissipational dynamics of the quantum-critical fluid

is controlled only by the Planckian time ℏ/kBT [10, 11], and is entirely independent of the energy

scale of the interactions between the microscopic degrees of freedom. This appears remarkable when

viewed from the lens of the Landau theory of quasiparticles, where the relaxational dynamics is

determined by collisions between quasiparticles, and the collision rate is proportional to the square

of the interaction strength via Fermi’s Golden Rule.
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A fresh perspective on the dynamics of systems without quasiparticles has recently appeared

in form of out-of-time-order correlators (OTOCs) [12]. These relate the absence of quasiparticles

to the rapid growth of quantum many-body chaos. The Wilson-Fisher fixed point is also expected

to become chaotic in a time of order ℏ/(kBT ) [13], and such a time is the shortest possible [7], as

has been proven for a class of models with many local degrees of freedom [12].

This article will describe perhaps the simplest system without quasiparticle excitations: the

Sachdev-Ye-Kitaev (SYK) model of fermions with random interactions. The simplicity has al-

lowed proof of the absence of quasiparticles, and the computation of numerous properties of non-

quasiparticle dynamics that are intractable for the Wilson-Fisher theory. Moreover, the SYK

model provides a realization of the low energy dynamics of black holes with a near-horizon AdS2

geometry [14], and this has led to new insights on the nature of the Bekenstein-Hawking entropy

of black holes which resolve long-standing open questions [15, 16]. The SYK model has also led

to significant advances in the theory of strange metals in correlated electron compounds [17, 18].

Only the black hole connection is described in this chapter, and the connection to strange metals is

described in a companion article [19]. The presentation is designed for condensed matter theorists,

in alignment with Michael Fisher’s vision of crossing inter-disciplinary boundaries.

The SYK model has no spatial structure, and should be considered as a critical quantum system

in spatial dimension d = 0. Naively extending the results (2,3) to d = 0, we conclude that the

T = 0 entropy of the SYK model should be a universal constant. This naive expectation is

essentially correct, but we do have to carefully consider the orders of limits of N → ∞ (where N

is the number of fermion flavors) and T → 0, and the influence of irrelevant operators. For a SYK

model with fermion density Q (0 ≤ Q ≤ 1), we have for the total entropy S in the limit N → ∞
followed by T → 0

S(T,Q)

kB
= N(s0 + γ kBT )−

3

2
ln

(
U

kBT

)
− lnN

2
+O(1/N) . (4)

The leading result in (4) is the Ns0 term [20], and this is the analog of the scaling result in (3)

in d = 0. Here s0 is a universal function of the charge Q; for half-filling with Q = 1/2, we have

s0 =
G
π
+

ln(2)

4
= 0.4648476991708051 . . . , (5)

where G is Catalan’s constant. So this term indicates a non-zero entropy density in the limit T → 0.

However, this term does not imply an exponentially large ground state degeneracy; determining

the ground state degeneracy requires consideration of the limit T → 0 followed by N → ∞, and

we will describe the structure of this limit in Section II.

The first correction to Ns0 in (4) is the term proportional to γ ∼ 1/U , where U is the root-

mean-square strength of the interactions. This correction is due to the leading irrelevant operator,

associated with the ‘Schwarzian’, which will play a crucial role in the analysis in Section II [21–25].
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Finite N fluctuation corrections have also been computed, and these require an exact path

integral over the effective action of the Schwarzian operator. Such a path integral leads to the

(3/2) ln(T ) correction in (4). The key property of this correction is that it diverges as T → 0,

indicating a breakdown of the 1/N expansion in this limit. Such a breakdown is a characteristic

feature of ‘dangerously irrelevant ’ operators, a concept introduced by Michael Fisher [26]. By

comparing the γ term with the (3/2) ln(T ), we see that the latter becomes larger at a temperature

scale T ∼ e−N , and so the Schwarzian operator is dangerously irrelevant below this exponentially

small T . Section II will discuss the lnN term [24, 27] in (4), and the nature of the spectrum of

the SYK model at low energy scales.

Let us now turn to the quantum theory of charged black holes. There are a variety of reasons

for suspecting that there is a connection between this seemingly unrelated system and the SYK

model [14]:

• It has long been known that black holes exhibit ‘Planckian’ dynamics [28]; more specifically,

the ring-down time τr of quasi-normal modes of black holes, when expressed in terms of the

black hole Hawking temperature T [29], is of the order of ℏ/(kBT ).

• The AdS/CFT correspondence of string theory [30] describes a duality between conformal

field theories in d+1 spacetime dimensions and quantum gravity in AdSd+2 space for d ≥ 1.

For the d = 0 case, it was pointed out [14] that conformal structure of correlators in SYK

model was identical to correlators in the AdS2 horizon of charged black holes [31].

• Charged black holes have a non-zero entropy as T → 0 at fixed black hole charge Q. This

matches the behavior of the large N limit of the SYK model in (4). Hawking’s famous result

for black hole entropy is [29]

S =
A(T )c3

4ℏG
, (6)

where A(T ) is the area of the horizon at a temperature T . For the case of a black hole

with total charge Q in a 3+1 dimensional spacetime which is asymptotically Minkowski,

A0 ≡ A(T → 0) = 2GQ2/c4 is non-zero, and Hawking’s result for the low T entropy is

[31–33]
S(T,Q)

kB
=

c3

4ℏG

(
A0 + 2

√
πA3/2

0

kBT

ℏc
+O(T 2)

)
. (7)

Note the perfect match with the T dependence of the first 2 terms in (4). As we will review in

Section III, this match extends also to finite N corrections, which leads to a common many-

body density of states. Here, we view (7) as obtained in a small G expansion, corresponding

to the large N expansion in (4).
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FIG. 2: Comparison of the many-body densities of states of SYK models (DSY K(E)) and

charged black holes (DBH(E)) with and without supersymmetry (SUSY). DBH(E) is for a

charged black holes in 3+1 dimensional asymptotically Minkowski space without SUSY [35],

where A0 is the area of the horizon at T = 0, see (66); DSY K(E) is from (32) [27]. The left plot is

for Majorana SYK, as in Fig. 5. Both black holes and SYK models with sufficient low energy

SUSY have an energy gap ∆, above a delta function with a co-efficient as in (8) [25, 36–38].

Black holes and SYK models without SUSY do not have delta function, nor a gap, but an

exponentially dense spacing of levels down to E = 0; their D(E) vanishes as E → 0, but with an

exponentially large pre-factor, and the latter is sufficient to yield a zero temperature entropy.

Hawking’s result for black hole entropy [29] was revolutionary, and raised many questions.

Foremost among them was that it did not identify any quantum degrees of freedom whose many-

body density of states, D(E), was the exponential of the entropy. The first identification [34]

of possible degrees of freedom appeared using string theory for charged black holes which had

supersymmetry at the lowest energies. This theory had an exponentially large degeneracy of

stringy states in the zero energy ground state, and it was established that

D(E) = eS(T→0,Q)/kBδ(E) + . . . (8)

for supersymmetric black holes, but the form of D(E) for non-zero E was not described.

Here we will review work building on the SYK model which has obtained the form of D(E) for a

generic charged black hole without supersymmetry; see Fig. 2, which summarizes the main results.

The D(E) of such black holes does not have an exponentially large degeneracy of the ground state.
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Indeed, there are no large degeneracies (apart from order unity degeneracies required by symme-

tries), but the energy levels have an exponentially small spacing. Supersymmetric generalizations

of the SYK model have also been studied [36, 39], and these do have the a D(E) of the form in

(8), confirming that the exponentially large degeneracy is a special feature of low energy super-

symmetry. This connection to supersymmetric SYK models has also allowed determination of the

non-zero E contributions to the D(E) of supersymmetric black holes in (8), and such computations

show that there is a gap in the many-body density of states above the zero energy delta function

[25, 37, 38].

A generic thermodynamic system with an extensive entropy has an energy level spacing which

is exponentially small in its size (N) at an extensive energy above the ground state. Here, we

are interested in the behavior of non-supersymmetric systems as the energy density becomes sub-

extensive. For a conventional quantum system, the low energy excitations are quasiparticles, and

hence the lowest energy level spacing is of order 1/Na (for some positive constant a), implying

D(E) ∼ Na at small E. In this perspective, the remarkable feature of the SYK model, and of

charged black holes, is that the energy level spacing remains of order e−N down to very low energies,

and this is linked to the non-zero T → 0 limits of the first two terms in (4) and (8). Indeed, this

exponentially small energy level spacing establishes the absence of quasiparticles (although the

converse need not be true): the number of quasiparticle states is ∼ N , and it is not possible to

combine them to obtain an exponentially large number of states with a non-extensive energy. The

wavefunctions of the low energy states change completely between successive states which happen

to have energies exponentially close to each other, a signal of their chaotic nature. In contrast,

in quasiparticle systems, successive states are very similar to each other, and differ only by the

motion of a few quasiparticles.

In Section II, we will further describe the finite N corrections in (4), and determine their

consequences for D(E) at the lowest energies. Remarkably, similar corrections apply also to the

black hole result in (7), and lead to similar results for the D(E) of generic charged black holes,

which will be presented in Section III. Section IV will present brief discussion of the D(E) of the

Wilson-Fisher theory placed on a sphere, and discuss its relationship to the SYK model and black

holes.

II. THE SYK MODEL

The Hamiltonian of a version of a SYK model is illustrated in Fig. 3. We take a system with

fermions ci, i = 1 . . . N states. Depending upon physical realizations, the label i could be position

or an orbital, and it is best to just think of it as an abstract label of a fermionic qubit with the

two states |0⟩ and c†i |0⟩. We now place QN fermions in these states, so that a density Q ≈ 1/2
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`

<latexit sha1_base64="vfe1dxMKiJR0Y0C5DHTi1sNWUTU=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEVPBS9OKxgmkLTSib7aRdu/lgdyOU0L/hxYMiXv0z3vw3btsctPXBwOO9GWbmBangStv2t1VaWV1b3yhvVra2d3b3qvsHLZVkkqHLEpHITkAVCh6jq7kW2Ekl0igQ2A5Gt1O//YRS8SR+0OMU/YgOYh5yRrWRPLeX88frkYdCTHrVml23ZyDLxClIDQo0e9Uvr5+wLMJYM0GV6jp2qv2cSs2ZwEnFyxSmlI3oALuGxjRC5eezmyfkxCh9EibSVKzJTP09kdNIqXEUmM6I6qFa9Kbif1430+GVn/M4zTTGbL4ozATRCZkGQPpcItNibAhlkptbCRtSSZk2MVVMCM7iy8ukdVZ3Lurn9+e1xk0RRxmO4BhOwYFLaMAdNMEFBik8wyu8WZn1Yr1bH/PWklXMHMIfWJ8/EzqRuQ==</latexit>

Uij;k`

FIG. 3: The SYK model: fermions undergo the transition (‘collision’) shown with quantum

amplitude Uij;kℓ.

is occupied, as shown in Fig. 3. The quantum dynamics is restricted to only have a ‘collision’

term between the fermions, analogous to the right-hand-side of the Boltzmann equation. However,

in stark contrast to the Boltzmann equation, we will not make the assumption of statistically

independent collisions, and will account for quantum interference between successive collisions:

this is the key to building up a many-body state with non-trivial entanglement. So a collision in

which fermions move from sites i and j to sites k and ℓ is characterized not by a probability, but

by a quantum amplitude Uij;kℓ, which is a complex number.

The model so defined has a Hilbert space of order 2N states, and a Hamiltonian determined by

order N4 numbers Uij;kℓ. Determining the spectrum or dynamics of such a Hamiltonian for large

N seems like an impossibly formidable task. But if we now make the assumption that the Uij;kℓ are

statistically independent random numbers, remarkable progress is possible. Note that we are not

considering an ensemble of SYK models with different Uij;kℓ, but a single fixed set of Uij;kℓ. Most

physical properties of this model are self-averaging at large N , and so as a technical tool, we can

rapidly obtain them by computations on an ensemble of random Uij;kℓ. In any case, the analytic

results we now describe have been checked by numerical computations on a computer for a fixed

set of Uij;kℓ. We recall that even for the Boltzmann equation, there was an ensemble average over

the initial positions and momenta of the molecules that was implicitly performed.

Specifically, the Hamiltonian in a chemical potential µ is [5, 40, 41]

H =
1

(2N)3/2

N∑

i,j,k,ℓ=1

Uij;kℓ c
†
ic

†
jckcℓ − µ

∑

i

c†ici (9)

cicj + cjci = 0 , cic
†
j + c†jci = δij (10)

Q =
1

N

∑

i

c†ici ; [H,Q] = 0 ; 0 ≤ Q ≤ 1 , (11)
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U U⌃ =
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FIG. 4: Self-energy for the fermions of H in (9) in the limit of large N . The intermediate Green’s

functions are fully renormalized.

and its large N limit is most simply taken graphically, order-by-order in Uij;kℓ, and averaging over

Uij;kℓ as independent random variables with Uij;kℓ = 0 and |Uij;kℓ|2 = U2. In the large N limit,

only the graph for the self energy in Fig. 4 survives, and the on-site fermion Green’s function is

given by the solution of the following equations

G(iω) =
1

iω + µ− Σ(iω)
, Σ(τ) = −U2G2(τ)G(−τ)

G(τ = 0−) = Q , (12)

where τ is imaginary time, and ω is imaginary frequency.

For general ω and T , Eqs. (12) have to be solved numerically. But an exact analytic solution is

possible in the limit ω, T ≪ U . At T = 0, the asymptotic forms can be obtained straightforwardly

[5]

G(iω) ∼ −isgn(ω)|ω|−1/2 , Σ(iω)− Σ(0) ∼ −isgn(ω)|ω|1/2 , (13)

and a more complete analysis allows one to obtain the exact form at non-zero T (ℏ = kB = 1) [42]

G(ω) =
−iCe−iθ

(2πT )1/2

Γ

(
1

4
− iω

2πT
+ iE

)

Γ

(
3

4
− iω

2πT
+ iE

) |ω|, T ≪ U . (14)

Here is E is a dimensionless number which characterizes the particle-hole asymmetry of the spectral

function; both E and the pre-factor C are determined by an angle −π/4 < θ < π/4

e2πE =
sin(π/4 + θ)

sin(π/4− θ)
, C =

(
π

U2 cos(2θ)

)1/4

, (15)

and the value of θ is determined by a Luttinger relation to the density Q

Q =
1

2
− θ

π
− sin(2θ)

4
. (16)
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The striking property of (14) is its conformally invariant form, which shows that at low energies

the characteristic frequency scale is determined solely by the Planckian frequency scale kBT/ℏ and

is independent of the value of U , as discussed in Section I.

A. G-Σ theory

We analyze fluctuations about the large N solution (14) by the path integral method [23, 24].

After introducing replicas a = 1 . . . n, and integrating out the disorder, the Grassman path

integral of the Hamiltonian H in (9) can be written as

Z =

∫
Dcia(τ) exp

[
−
∑

ia

∫ β

0

dτ c†ia

(
∂

∂τ
− µ

)
cia

− U2

4N3

∑

ab

∫ β

0

dτdτ ′

∣∣∣∣∣
∑

i

c†ia(τ)cib(τ
′)

∣∣∣∣∣

4

 . (17)

For simplicity, we neglect the replica indices, and introduce the identity

1 =

∫
DG(τ1, τ2)DΣ(τ1, τ2) exp

[
−N

∫ β

0

dτ1dτ2Σ(τ1, τ2)

(
G(τ2, τ1)

+
1

N

∑

i

ci(τ2)c
†
i (τ1)

)]
. (18)

Then the partition function can be written as a path integral with an action S analogous to a

Luttinger-Ward functional

Z =

∫
DG(τ1, τ2)DΣ(τ1, τ2) exp(−NI)

I = ln det [δ(τ1 − τ2)(∂τ1 + µ)− Σ(τ1, τ2)]

+

∫
dτ1dτ2

[
Σ(τ1, τ2)G(τ2, τ1) + (U2/2)G2(τ2, τ1)G

2(τ1, τ2)
]

(19)

This is a ‘G-Σ’ theory [20, 23, 24, 41], written as a path integral over bi-local in time functions

G(τ1, τ2 and Σ(τ1, τ2), in contrast to the path integral over N fermionic fields in (17). The saddle

point of (19) yields the equations (12) for the Green’s function G(τ1 − τ), and the self energy

Σ(τ1 − τ2).

B. Emergent symmetries

To analyze fluctuations of (19) about its saddle point, we need a better understanding of its

symmetries, as this will help motivate an effective action for the lowest energy fluctuations. At

10



frequencies ≪ U , the time derivative in the determinant is less important, and without it the path

integral is invariant under the time reparametrization (f(σ)) and gauge (ϕ(σ)) transformations

τ = f(σ)

G(τ1, τ2) = [f ′(σ1)f
′(σ2)]

−1/4
e−iϕ(σ1)+iϕ(σ2) G(σ1, σ2)

Σ(τ1, τ2) = [f ′(σ1)f
′(σ2)]

−3/4
e−iϕ(σ1)+iϕ(σ2) Σ(σ1, σ2) (20)

where f(σ) and ϕ(σ) are arbitrary functions.

We also need a better understanding of the symmetries of the saddle-point solutions of (19),

which we denote as Gs(τ1 − τ2) and Σs(τ1 − τ2). The solutions in (13) written in imaginary time

are

Gs(τ1 − τ2) ∼ (τ1 − τ2)
−1/2

Σs(τ1 − τ2) ∼ (τ1 − τ2)
−3/2. (21)

The saddle point will be invariant under a reparamaterization f(τ) when choosing G(τ1, τ2) =

Gs(τ1 − τ2) leads to a transformed G̃(σ1, σ2) = Gs(σ1 − σ2) (and similarly for Σ). It turns out this

is true for (21) only for the SL(2, R) transformations under which

f(τ) =
aτ + b

cτ + d
, ad− bc = 1. (22)

So the (approximate) reparametrization symmetry is spontaneously broken down to SL(2, R) by

the saddle point.

Let us also note the extension of (22) to T > 0. The T > 0 solution in (14) is the Fourier

transform of

G(τ1 − τ2) = −A
e−2πET (τ1−τ2)

√
1 + e−4πE

(
T

sin(πT (τ1 − τ2))

)2∆

. (23)

This is invariant under PSL(2, R) transformations which map the thermal circle onto itself, and

an associated gauge transformation

tan(πTf(τ))

πT
=

a
tan(πTτ)

πT
+ b

c
tan(πTτ)

πT
+ d

, ad− bc = 1,

−iϕ(τ) = −iϕ0 + 2πET (τ − f(τ)) . (24)

Indeed, we can derive the T > 0 form (23) for (21) by using (24) [41].

11



C. From the SYK model to the Schwarzian action

We now return to the path integral in (19). We focus on the vicinity of the saddle point, Gs, Σs,

and the low energy “Nambu-Goldstone” modes associated with breaking time reparameterization

and U(1) gauge symmetries by writing [23, 24]

G(τ1, τ2) = [f ′(τ1)f
′(τ2)]

1/4Gs(f(τ1)− f(τ2))e
iϕ(τ1)−iϕ(τ2) (25)

(and similarly for Σ). Then the path integral (19) is approximated by

Z =

∫
Df(τ)Dϕ(τ)e−E0/T+Ns0−NIeff [f,ϕ] , (26)

where E0 ∝ N is the ground state energy. Demanding that Seff is invariant under the symmetries

in (24), we obtain the following effective action in a gradient expansion (this can be viewed as

‘non-linear sigma model’ associating with the breaking of time reparameterizations to SL(2,R))

Ieff [f, ϕ] =
K

2

∫ 1/T

0

dτ(∂τϕ+ i(2πET )∂τ ϵ)2 −
γ

4π2

∫ 1/T

0

dτ
{
tan(πT (τ + ϵ(τ))), τ

}
, (27)

where f(τ) ≡ τ + ϵ(τ), the couplings K, γ, and E can be related to thermodynamic derivatives.

Specifically, the coupling γ is the same as that appearing in (4). We have used the Schwarzian

{
g, τ
}
≡ g′′′

g′
− 3

2

(
g′′

g′

)2

, (28)

which is obtain from the requirement that effective action at T = 0 obey

Ieff

[
f(τ) =

aτ + b

cτ + d
, ϕ(τ) = 0

]
= 0 . (29)

D. Many-Body Density of States

It now remains to evaluate the path integral in (26). Remarkably, this path integral can be

evaluated exactly [25]. We will not present the details here, and refer the reader to the literature

[21–25, 27]. The final result is best expressed in terms of the many-body density of states, related

to the partition function by a Laplace transform

Z(T,Q) =

∫ ∞

0−
D(E,Q)e−E/T , (30)

while the entropy is given by

S(T,Q) =
∂

∂T
(T lnZ(T,Q))

∣∣∣∣
Q
. (31)

12
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FIG. 5: Plot of the 65536 many-body eigenvalues of a N = 32 Majorana SYK Hamiltonian

(credit: G. Tarnopolsky); however, the analytical results quoted here are for the SYK model with

complex fermions which has a similar spectrum. The coarse-grained low energy and low

temperature behavior is described by (32) and (4).

This procedure yields the main result for the SYK model (see Fig. 5)

D(E,Q) ∼ 1

N
exp(Ns0) sinh

(√
2NγE

)
. (32)

It should be noted that the 1/N pre-factor does not follow from the low energy theory in (26), but

requires an analysis of the full partition function in (19) [27]; this applies also to the lnN term in

(4). The remaining terms in (32) are more universal, and rely mainly on the SL(2,R) symmetry of

(27). The result for the entropy in (4) now follow from (30) and (32). The thermodynamic limit

of the entropy limN→∞ S(T )/N in (4) yields the microcanonical entropy

S(E)/kB = Ns0 +
√

2NγE , (33)

and this connects to the extensive E limit of (32) after using Boltzmann’s formula D(E) ∼
exp(S(E)/kB). We summarize these results, and compare with numerics on the SYK model in

Fig. 5 and Fig. 2.

III. CHARGED BLACK HOLES

This section will begin by reviewing Hawking’s computation of the entropy of a Schwarzschild

black hole with no net charge [43] in Section IIIA. This is extended to charged black holes in Sec-
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FIG. 6: Cigar geometry of a Schwarzschild black hole in Euclidean time.

Black hole 
horizon

FIG. 7: Observation of entanglement across the horizon.

tion III B, and subsequent subsections discuss reduction of the near-horizon theory of the charged

black hole to the Schwarzian theory.

A. Gibbons-Hawking computation of black hole entropy

The Gibbons-Hawking method proceeds by simply evaluating the action of classical Einstein

gravity in Euclidean time. Planck’s constant appears only via the requirement that the temporal

period is ℏ/(kBT ). In Euclidean time, we will see below that the spacetime geometry along the

radial and temporal directions is a ‘cigar’ which closes off at the horizon, as shown in Fig. 6.

Consequently, the computation is performed entirely outside the black hole, and we sidestep our

ignorance of the black hole interior. The black hole entropy is then seen to be a consequence of

entanglement around the horizon, as shown in Fig. 7.
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The Einstein action for gravity in 3+1 dimensions is

IE =

∫
d4x

√
g

[
− 1

2κ2
R4

]
, Z =

∫
Dg exp(−IE) , (34)

where κ2 = 8πG is the gravitational constant, R4 is the Ricci scalar. The Schwarzschild solution

of the saddle-point equations is

ds2 = V (r)dτ 2 + r2dΩ2
2 +

dr2

V (r)
(35)

where dΩ2
2 is the metric of the 2-sphere, and

V (r) = 1− m

r
. (36)

The gravitational mass of the black hole is M = 2Gm. The black hole horizon is at r = r0 where

V (r0) = 0; so

r0 = m. (37)

The T > 0 quantum partition function is obtained in a spacetime which is periodic as a function

of τ with period ℏ/(kBT ), as in Fig. 6. We have to ensure that there is no singularity at the horizon

r0 where V (r0) = 0. Let us change radial co-ordinates to y, where r = r0 + y2. Then for small y

ds2 =
4

V ′(r0)

[
(V ′(r0))2

4
y2dτ 2 + dy2

]
+ r20dΩ

2
2 =

4

V ′(r0)

[
y2dθ2 + dy2

]
+ r20dΩ

2
2 (38)

The expression in the square brackets is the metric of the flat plane in polar co-ordinates, with

radial co-ordinate y and angular co-ordinate θ = V ′(r0)τ/2. Smoothness requires periodicity in θ

with period 2π, and so

4πT = V ′(r0) =
1

m
. (39)

The free energy βF = IE, where β = 1/T . So the entropy is (as in (31))

S = −∂F

∂T
=

(
β

∂

∂β
− 1

)
IE (40)

However, the metric is τ -independent, and the only explicit dependence of the action is via IE =

βH. Such an action implies S = 0.

Gibbons and Hawking [43] argued that a proper evaluation of the gravity action requires a

boundary term, IGH , so that the gravity path integral in (34) is replaced by

Igrav = IE + IGH , IGH =

∫

∂

d3x
√
gb

[
− 1

κ2
K3

]
, Z =

∫
Dg exp(−Igrav) , (41)
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where H is the Hamiltonian. Hence, when such a geometry provides the dominant
saddle point, ln Z ≈ I is linear in β, and

S ≈
(
β
∂

∂β
− 1

)
I = 0. (6.7)

That is, there is no classical contribution to the entropy for this solution, as we would
expect.

For solutions with a black hole, on the other hand, such a foliation by surfaces of
constant time will necessarily break down in the interior, where the S1 degenerates.
Thus, the action will not be linear in β. We can split the integration over the spacetime
up in the way shown in figure 12, into an integral over a small disc around the horizon
at r = r+, and the remaining integration. The remaining integration will then be
linear in β, as this region can be foliated with surfaces of constant t.

τ
r = r+

Figure 12: Decomposition of the calculation of the bulk action into a small region
near the horizon and the remainder.

One might think that the integration over the small disc would vanish in the limit
as we take the size of the disc to zero, since this is a smooth region of spacetime.
However, this is not the case: to be able to write the integration over the bulk of the
spacetime in Hamiltonian form, we have to be careful about how we break up the
integration, which means we have to keep a boundary term in the action (see [69, 70]).
The (leading-order) gravitational part of the action for the disc is

Igrav =
1

16πG

∫

M

ddx
√−gR +

1

8πG

∫

∂M

dd−1y
√

−hK. (6.8)

The first term is the usual Einstein-Hilbert term; the second term is the integral of
the trace of the extrinsic curvature over the boundary, K = hµν∇µnν , where nµ is the
normal to and hµν the induced metric on the boundary. The surface term can also
be rewritten as ∫

∂M

dd−1y
√

−hK = − ∂

∂n

∫

∂M

dd−1y
√

−h. (6.9)

This surface term is necessary to ensure that the variation of the action vanishes
under arbitrary variations of the metric which vanish on ∂M [71].

For a small disc near the horizon, the metric is approximately

ds2 ≈ ρ2κ2dτ 2 + dρ2 + r2
+dΩ, (6.10)
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FIG. 8: The action Igrav is evaluated in the shaded region at the end of the cigar (figure adapted

from [44]).

where K3 is the extrinsic scalar curvature of the 3-dimensional boundary of spacetime. IGH is the

Gibbons-Hawking boundary term, deduced by the requirement that the Euler-Lagrange equations

of Igrav co-incide with the Einstein equations, with no additional boundary terms. Because the

bulk action does not contribute any entropy, we can move the boundary from asymptotically far

region to the vicinity of horizon, as shown in Fig. 8 [44]. The entire contribution to the entropy

then comes from IGH evaluated in the vicinity of the co-ordinate singularity at r = r0. We evaluate

IGH by using the identity

∫

∂

d3x
√
gbK3 =

∂

∂n

∫

∂

d3x
√
gb (42)

where n is the Gaussian normal co-ordinate of the boundary. Evaluating at y = ϵ, we have

∫

∂

d3x
√
gb = 2πϵA (43)

where A = 4πr20 is the area of the horizon. Combining everything, and noting that the contribution

of IE in the shaded region of Fig. 8 vanishes in the limit ϵ → 0, we have the famous result of Hawking

S =
2πA
κ2

=
A
4G

. (44)

B. Hawking entropy of a charged black hole

For a charged black hole, we need the Einstein-Maxwell theory of g and a U(1) gauge flux

F = dA, and simply need to compute the area of the horizon in this modified geometry. The

Einstein-Maxwell action is

IEM =

∫
d4x

√
g

[
− 1

2κ2
R4 +

1

4g2F
F 2

]
, ZQ =

∫
DgDA exp(−IEM − IGH) . (45)
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FIG. 9: Schematic of a charged (Reissner-Nördstrom) black hole.

The saddle-point equations now yield a solution with [31, 32]

V (r) = 1 +
Θ2

r2
− m

r
; Aτ = iµ

(
1− r0

r

)

Θ =
κr0√
2gF

µ ; Q =
4πµr0
g2F

; S =
2πA
κ2

, (46)

where Q is the total charge, the chemical potential is µ, and as before the horizon is where

V (r0) = 0, the temperature T = V ′(r0)/(4π), and A = 4πr20. This defines a two parameter family

of charged black hole solutions of IEM determined by T and Q.

Now we take the limit T → 0 at fixed Q. Then we find the remarkable feature that the horizon

radius remains finite

Rh ≡ r0(T → 0, Q) =
QκgF
4π

(47)

In this limit, entropy becomes

S(T → 0, Q) =
4πR2

h

G
+ γ T , γ ≡ 4π2R3

h

G
, (48)

corresponding to the result in (7).

For the near-horizon metric, it is useful to introduce the co-ordinate ζ

r = Rh +
R2

h

ζ
(49)
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FIG. 10: AdS2 in ρ and τ̂ co-ordinates, with metric as in (54).

so that the horizon at T = 0 is at ζ = ∞. Then in the near-horizon regime Rh ≪ ζ < ∞ the

T = 0 metric is

ds2 = R2
h

dτ 2 + dζ2

ζ2
+R2

hdΩ
2
2 (50)

The spacetime in (50) is AdS2 × S2, as illustrated in Fig. 9. The dominant low energy excitations

involve the AdS2 component, and so the near-horizon metric is effectively 1+1 dimensional.

C. AdS2 and its symmetries

The AdS2 metric

ds2 =
dτ 2 + dζ2

ζ2
(51)

is invariant under isometries which are SL(2,R) transformations. The reader can verify that the

co-ordinate change

τ ′ + iζ ′ =
a(τ + iζ) + b

c(τ + iζ) + d
, ad− bc = 1 , (52)

with a,b,c,d real, leaves the AdS2 metric invariant. This is a crucial fact, and establishes a connec-

tion to the SL(2,R) invariance of the SYK model in (22).
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As for the SYK model, we can map the T = 0 metric to T > 0 metric. The co-ordinate

transformation

ζ =
1

cosh(2πTρ)− sinh(2πTρ) cos(2πT τ̂)
, τ =

sinh(2πTρ) sin(2πT τ̂)

cosh(2πTρ)− sinh(2πTρ) cos(2πT τ̂)
(53)

maps the metric to

ds2 = 4π2T 2
[
dρ2 + sinh2(2πTρ)dτ̂ 2

]
, (54)

which is illustrated in Fig. 10. The τ̂ directions is periodic with period 1/T .

D. From Einstein-Maxwell theory in 3+1 dimensions to the Schwarzian action

We have shown above how a universal AdS2 metric emerges in the near-horizon region of a

charged black hole in 3+1 dimensions (a similar mapping applies in d+2 dimensions with d ≥ 2).

This subsection will carry out the same mapping at the level of the action, and so allow us to go

beyond the saddle-point approximation at low energies.

1. From IEM in 3+1 dimensions to IEM,2 in 1+1 dimensions.

This dimensional reduction is carried out the by simply taking all fields dependent only upon

the radial co-ordinate r and imaginary time τ . We make the metric ansatz [45]

ds2 =
ds22

Φ(ζ, τ)
+ [Φ(ζ, τ)]2 dΩ2

2 (55)

where ds22 is an arbitrary metric in the (ζ, τ) spacetime, and Φ is a scalar field in the (ζ, τ)

spacetime. Here we do not discuss the dimensional reduction of the U(1) gauge field A, which has

been described elsewhere [33, 45].

2. JT gravity as the low energy limit of IEM,2

We take the low energy limit of IEM,2 by mapping it to a near-horizon theory, IJT , in a 1+1

dimensional spacetime with a boundary [46–50]. The low energy theory on the (ζ, τ) spacetime

involves a metric h, and a scalar field Φ1 given by

lim
ζ→∞

[Φ(ζ, τ)]2 = R2
h + Φ1(ζ, τ) , (56)

obeying the action

IJT = −2πA0

κ2
+

∫
d2x

√
h

[
−2π

κ2
Φ1

(
R2 +

2

R3
h

)]
− 4π

κ2

∫

∂

dx
√

hbΦ1K1 (57)
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where A0 = 4πR2
h is the area of the horizon at T = 0, and K1 is the extrinsic curvature of the

one-dimensional boundary ζ → 0 where

hττ (ζ → 0) =
R3

h

ζ2
, Φ1(ζ → 0) =

2R3
h

ζ
(58)

3. Fluctuations about the AdS2 saddle point of IJT

Einstein gravity in 1+1 dimensions has no graviton, and is ‘pure gauge’. In the JT-gravity theory

with boundary, there is a remnant degree of freedom which is a boundary graviton, as illustrated

in Fig. 9. The action for this boundary graviton turns out to be the advertised Schwarzian theory:

consequently, the partition function of the 1 + 1 dimensional JT gravity theory can be evaluated

exactly (here we are ignoring the gauge field path integral, which is subdominant at fixed Q

[27, 51]).

The partition function of JT gravity is

ZQ =

∫
DhDΦ1 exp (−IJT ) (59)

The action is linear in Φ1, and the integral over Φ1 yields a constraint R2 = −2/R3
h i.e. the metric

h is rigidly AdS2. The only dynamical degree of freedom in JT gravity is a time reparameterization

along the boundary τ → f(τ) [46, 48]. To ensure that the bulk metric obeys its boundary condition,

we also have to make the spatial co-ordinate ζ a function of τ , so we map (τ, ζ) → (f(τ), ζ(τ)).

Then the metric obeys its boundary condition provided ζ(τ) is related to f(τ) by (here ζb is a

small constant whose value cancels in the final result)

ζ(τ) = ζbf
′(τ) + ζ3b

[f ′′(τ)]2

2f ′(τ)
+O(ζ4b ) (60)

Finally, we evaluate IGH along this boundary curve. In this manner we obtain the action

I1,eff [f ] = −2πA0

κ2
− γ

4π2

∫
dτ
{
f(τ), τ

}
,
{
f, τ
}
≡ f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

(61)

where γ = 32π3R3
h/κ

2 is precisely the linear-T co-efficient in the black hole entropy in (48).

After a conformal map to finite temperature (and ignoring the contribution of the gauge field

fluctuation), we can write the low energy partition function of a 3+1-dimensional black hole with

charge Q = 4πRh/(κgF ), as a path integral over a single field f(τ) in one time dimension:

ZQ = exp

(
2πA0

κ2

)∫ Df

||SL(2,R)|| exp
(

γ

4π2

∫ 1/T

0

dτ
{
tan(πTf(τ)), τ

})
(62)
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where γ = 32π3R3
h/κ

2, A0 = 4πR2
h, and f(τ) is a monotonic function of τ obeying

f(τ + 1/T ) = f(τ) + 1/T . (63)

We divide by the (infinite) volume of the SL(2,R) group because

{
f, τ
}
=
{af + b

cf + d
, τ
}

(64)

where a, b, c, d are constants with ad− bc = 1. This is precisely the theory obtained in Section IIC

for the SYK model. The integral over the phase field ϕ is not present in (62), but it also appears

in the same form after including the dimensional reduction of the gauge field A [33, 45].

E. Many-Body Density of states

With the mapping to the Schwarzian in (62), we can now immediately apply the results of

Section IID to the charged black hole. The final results for the entropy and many-body density

of states are [35]

S(T,Q)

kB
=

c3

4ℏG

(
A0 + 2

√
πA3/2

0

kBT

ℏc

)
− 3

2
ln

(
(ℏc5/G)1/2

kBT

)
− 559

180
ln

(A0c
3

ℏG

)
+ . . . . (65)

D(E,Q) ∼
(A0c

3

ℏG

)−347/90

exp

(A0c
3

4ℏG

)
sinh

([√
πA3/2

0

c3

ℏG
E

ℏc

]1/2)
. (66)

These results should be compared to (4) and (32) for the SYK model, as in Fig. 2. For the

entropy, the first two terms are the saddle-point contributions, which are proportional to 1/G

and N respectively. The (3/2) lnT terms are identical between (65) and (4), and arise from the

Schwarzian path integral. Finally, the ln(A0) term in (65) is the analog of the lnN term in (4), and

these do have different co-efficients, reflecting their sensitivity to microscopics. The lnN term relies

on the fact that (9) contains only 4-fermion terms [24, 27], while the lnA0 term has a co-efficient

dependent upon the number of massless fields in the quantum gravity theory under consideration

[35]. The lnA0 term was partly computed in earlier work [52, 53].

The many-body density of states in (66) is connected to the entropy in (65) via (30), and the

lnA0 term in the entropy determines the power of A0 in the pre-factor. However, the E dependence

is identical to that in (32).

IV. WILSON-FISHER CONFORMAL FIELD THEORY

It is instructive to compare the above results for the many-body density of states of the SYK

model and charged black holes with those of the Wilson-Fisher conformal field theory. To this end,
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we place the Wilson Fisher theory in 2+1 dimensions on the two-dimensional surface of a sphere

of radius R. Via the state-operator correspondence of conformal field theory, there is a one-to-one

correspondence between the energy eigenvalues En and the scaling dimensions of operators ∆n:

En =
ℏc∆n

R
(67)

where c is the velocity of ‘light’, and the ground state has zero energy. The lowest energy levels

correspond to operators originally studied by Wilson and Fisher [2], and they have ∆n and their

spacings of order unity. So for E ∼ ℏc/R, we have the many-body density of statesD(E) ∼ R/(ℏc).
This small value of D(E) at low E is quite different from the SYK model and charged black holes.

Let us now consider larger energies with E ≫ ℏc/R. At sufficiently large energies, we expect

chaotic behavior with eigenstate thermalization, and so the system should be characterized locally

by a flat space theory at a temperature T . From the entropy density in (3) for d = 2, we obtain

the total entropy

S(T ) = (4πR2) a2kB(kBT/(ℏc))2 . (68)

We can now use familiar thermodynamic identities (S = −∂F/∂T , F = E − TS) to obtain the

energy

E(T ) =
2T

3
S(T ) , (69)

and then convert to the microcanonical ensemble

S(E) = kB(9πa2)
1/3

(
ER

ℏc

)2/3

. (70)

Finally, from Boltzmann’s relation we obtain the many-body density of states

D(E) ∼ exp

[
(9πa2)

1/3

(
ER

ℏc

)2/3
]
. (71)

This shows that the spacing between energy levels for E ≫ ℏc/R is exponentially small in E2/3,

and (71) should be compared with the exponentials (obtained from the large argument limit of

the sinh) of E1/2 in (32) for the SYK model, and in (66) for charged black holes. These large

dimension operators of the Wilson-Fisher theory correspond to neutral black hole states, although

their gravity theory is surely more complicated than Einstein gravity. It would be interesting to

study such black hole states numerically by the methods of Ref. 54.

We can now see that a significant advantage of the SYK model was that its black holes states

extended all the way down to the ground state, and this was an important reason for its simplicity.
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In contrast, the Wilson-Fisher theory is black hole-like only above some threshold energy, and the

low-lying states are not exponentially dense.

When carried out for a conformal field theory in d spatial dimensions, the above argument yields

D(E) ∼ exp
[
bEd/(d+1)

]
, for some constant b, for black hole states [55, 56]. This does not match the

SYK model D(E) ∼ exp
[
bE1/2

]
at d = 0 because of the important role of the Schwarzian-induced

breaking of conformal symmetry: the state-operator correspondence does not apply to the SYK

model.

V. DISCUSSION

The main results for the common structure of the many-body densities of states of non-

supersymmetric charged black holes and the SYK model have been obtained in Sections II and

III, and were summarized in Fig. 2. This connection shows that it is possible to realize Hawking’s

black hole entropy in a manner consistent with the standard quantum mechanics of many-body

systems without supersymmetry. The match is at the level of the density of states coarse-grained

over a few level spacings, and extends also to multi-point correlators of the density of states [57].

The precise energy levels of the SYK model in Fig. 5, of course, depend upon the particular

realization chosen for the couplings Uij;kℓ. We do not expect any such instance of the SYK model

to described the ultimate microstructure of a realistic black hole. But numerous universal features

of realistic black holes are indeed captured by the SYK model [58], after coarse-graining over an

exponentially small level spacing.

The reader may find the analogy with single-particle quantum chaos instructive. A particle

moving in a quantum billiard defines a problem with no randomness in the Hamiltonian, analogous

to a black hole. Nevertheless, the energy levels are chaotic, and their statistical properties are

equivalent to those of a random matrix ensemble [59, 60]. For the black hole, the SYK model

defines a random matrix in the many-body Fock space of size 2N × 2N using of order N4 random

numbers: so the SYK matrix is quite sparse and has significant structure, and is very far from a

fully random matrix with 22N independent elements.

Finally, we note that the SYK model was originally introduced [5] as a toy model of the strange

metal state of the cuprates. This connection has also undergone rapid development in recent

years, and has led to realistic and universal model of strange metal behavior [18], as reviewed in a

companion article [19].
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